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Abstract

Programs executing on a private-mcmory parallel system exchange data by explicitly sending and
receiving messages. Two communication styles have been identified for such systems: memory
communication (each message exchanged between two processors is buffered in memory, e.g. as
in message passing) and systolic communication (each word of a message is transmitted directly
from the sender processor to receiver processor, without any buffering in memory). The iWarp
system supports both communication styles and therefore provides a platform that allows us to
evaluate how the choice of communication style impacts the usage of processor resources.
Parallel program generators map a machine independent description of a computation onto a
private-memory parallel system. We use two different pa.-allel program generators that employ
the two communication styles to map a set of application L;rmels onto iWarp. By using tools to
generate the parallel programs, we are able to obtain realistic data on the execution of progranis
using the different communication styles. This paper reports on measurements of instruction
format usage, the utilization of the communication ports (gates), and instruction frequencies on
the iWarp system. h• is a first step towards understanding how features and capabilities of parallel
processors are actually used by parallel programs that have been mapped automatically.
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1 Introduction

Parallel systems consisting of processors with private memories rely on the explicit exchange of
messages for communication. Programs executing on such systems use some form of "send"
and "receive" to transfer data from one processor to another. The details of the communication
operations supported by different parallel systems differ in many aspects, but we can identify
two communication styles: systolic communication and memory communication[91. These stylcs
differ in how messages are generated and consumed.

In systolic communicAtion, a message is generated word-by-word, and each word is trans-
mited immediately (i.e., on the fly, without explicit buffering) to the destination processor. In
memory communication, the complete message is generated, stored in memory and then trans-
mitted to the destination. Since the complete message is generated before it is transmitted, the
words of a message can be generated in any order for memory communication, whereas for sys-
tolic communication, the words of a message must be produced in the order they are sent. Since
the sender tind receiver processors operate independently, they can use different communication
styles; message passing is an example of memory communication where both the sender and the
receiver use memory communication (i.e., they buffer the message in memory before sending
and after receiving).

Different communication styles require different architectural support. For example, efficient
systolic communication requires direct program access to the communication system (e.g., the
ports that connect a processor to its neighbors). On the other hand, the choice of communication
style influences how operands are accessed. Since systolic communication allows the processor
to directly retrieve operands from the communication system, fewer load operations must be
executed. in this case the communication system is another source of operands (in addition to
memory and registers), and such operands may have an effect on the amount of instruction-level
parallelism! that can be exploited.

To evaiuate 'he impact of the communication style, we investigate the execution of a set of
piograms on the iWarp system. The program for each node contains explicit communication
operations,! but it is generally recognized that writing programs with explicit communication is
difficult and error prone. For this reason, a number of parallel program generators (or parallelizing
compilers) have been implemented[22, 1, 14,2,3, 121, and the development of such tools is still an
highly active area. These tools ease the task of programming significantly since the tool maps the
data and the computation, described in a machine independent format, onto the specific parallel
machine. That &';, the tool is responsible for all the details of management of the parallelism,
although a human programmer may assist the tool with directives or hints. Any serious evaluation
of a uni-processor has to be based on compiler generated code, and similarly, an evaluation of
the features of a parallel system must consider programs that have been mapped automatically.

For this evaluation, the programs are mapped by two parallel program generators onto the
system, one for each communication sLyle[ 1, 21. The iWarp system was developed by Intel
Corp. to support both memory communication and systolic communication[ 13, 8, 9]. Since
both communication styles are supported, the iWarp system prov:es a unique opportunity
to empirically evaluate how parallel programs based on these communication styles use the
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processor resources. Such information can be used in many ways: to evaluate if ther is any
correlation between communication style and instruction frequencies, to evaluate how operands
arm stored (in registers or in mcmory), to assess which machine resources are used (or not
used) by specific parallel programs, and to conclude which machine features are essential if a
future processor aims to be a host for parallel programs that employ memory and (or) systolic
communication.

The structure of the paper is then as follows. Section 2 briefly describes the hardware platform
as well as the two program generators. Section 3 describes our results for our set of four common
numerical application kernels (matrix multiplication, LU decomposition, QR decomposition, and
successive over-relaxation). A comparison of the two communication styles invites a discussion
of the relative merits of these two styles, and we address this issue in Section 4. Section 5
summariz:s the key points of the paper and contains our conciusioas.

We provide one detailed example of how the communication style influences the mapping of
computations onto a parallel system. The appendix describes this example (matrix multiplication)
in more detail. Although both versions of matrix multiplication compute the same result, they
differ in the way the computation is mapped onto the array; selection of the communication
style has far-reaching consequences for the program structure. A reader unfamiliar with parallel
program generators is invited to read the appendix before proceeding to Section 2.

2 Background

2.1 iWarp system

iWarp is a single-chip VLSI processor developed by Intel Corp[ 13, 8, 91. It contains a computa-
tion agent (20 MFLOPS single precision, 20 MIPS) and a high throughput (320 MBytcs/s), low
latency (200 ns) communication agent for transferring data between other iWarp processors. An
iWarp system is a 2D torus of iWarp nodes, ranging in size from 4 nodes to 1024 nodes.

Figure 1 depicts a block-level sketch of the iWarp processor. The communication agent of
each processor contains a number of FIFO queues, each 8 words deep. Any data received from
neighboring nodes are stored in one of these queues until the program is ready to process these
data. The heads of the queues can be mapped to special registers in the register file called systolic
gates, or simply giaes.

Gates can be used as instruction operands like any other register in the register file, and with
the aame access time. If a gate is used as an input operand, a data word is removed from the head
of the associated queue and passed to the functional unit; if the queue is empty, the instruction
spins until a data word arrives. If a gate is used as an output operand, the data word is placed at
the tail of the associated queue; if the queue is full,t.he instruction spins until a data word leaves
the queue. The key points are (I) access time to the communication system via the queues is
the same as a register access, and (2) word-level flow control is handled automatically by the
hardware.

The iWarp instruction set contains two types of instructions:

1. Short instructions contain a single operation and control a single functional unit. Examples
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Figure 1: iWarp processor

include load, store, floating-point add, floating-point multiply, and integer add. Loads,
stores, and the floating point operations execute in 2 cycles. Most other short instructions
take I cycle. Short instructions are encoded in 32 bits.

2. Long instructions control multiple functional units and therefore contain multiple oper-
ations. A long instruction word (LIW) is encoded in 96 bits, and the execution time is
the maximum execution time of each of the constituent operations. A single 2-cycle LIW
instruction can perform a load and a store (or two loads) with auto-increment of the address
register, a floating point add, and a floating point multiply, as well as decrement and test a
counter (to implement loops). An LIW contains a maximum of 5 operations.

The iWarp node contains several features to support memory communication. Each node
provides a high bandwidth to local memory. When using the LIW format, there can be one load
for every floating point operation, for apeak memory bandwidth of 80MBytes/s. This bandwidth
(and the flexibility of the LIW format) ensure that the processor is not starved for data, even if no
data ame supplied by the communication system. E.g., a scalar dot product can proceed at the peak
floating point rate. To move medium-sized and large messages directly from the communication
system to memory, the iWarp processor contains 8 DMA-like controllers called spoolers. Each
spooler can move data from the communication system to the memory at a rate of 40 MBytes/s.
This rate matches the bandwidth of the communication buses to the neighbor processors. Up to 4
spoolers can proceed at full bandwidth, i.e., the total memory bandwidth is 160 MBytcs/s, but in
this case, the spoolers steal all memory cycles from the computation agent. Spoolers are attractive
when multiple messages arrive at the same time, or if message arrival occurs asynchronously
with respect to program execution. However, the setup of a spooler requires the execution of
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instructions. If only one or two messages must be moved to memory, and if !he message arrival
is synchronized with piogram execution, then moving the message to memory via explicit store
operations is faster.

2.2 Sample programs

We analyze the single-node resource usage for four standard linear algebra application kernels:
matrix multiply (MM). LU decomposition, QR decomposition, and successive over relaxation
(SOR). There are two different parallel programs for each kernel: one program based on mem-
ory communication, with a structure as discussed in Section A.I. and one based on systolic
communication as discussed in Section A.2. We refer to the programs based on the systolic
communication style as systolic programs; we refer to the pr)grams based on the memory com-
munication style as memory-based programs. All of the programs, except for systolic SOR, are
produced automatically from a high-level description of the computation using two program gen-
erators developed locally t2, 5, 1 ]. (Due to the structure of SOR, thi parallel program generator
can not automatically create a systolic program.)

2.3 Program generation issues

ALl programs are generated for a linear array of 16 nodes. The actual iWarp system is organized
as a 2-dimensional torus, but it is easy to map a linear array onto the torus. We also investigated
in a separate study the tradeoff between producing code for a linear array and then mapping
the linear array onto the torus versus directly producing code for a torus. For applications and
problem sizes like the ones discussed here, the linear array is actually superior for the memory
communication styl4. We do not know of any tool that maps computations automatically onto
a 2-dimensional torus using systolic communication. Furthermore, the innermost loops for the
programs based on systolic communication are tight, so the current systolic program generator
provides a realistic picture.

There are many models of memory communication, including many forms of message
passing, used by private-memory computers[6, 7, 19). These models differ in their functionality
and overhead. Our parallel program generator uses only neighbor-to-neighbor communication
and a high-speed broadcast primitive. A broadcast message is stored and forwarded on a
word-by-word basis.. This allows the sender to operate at full speed, solely determined by the
communication bandwidth. Since all the connections used by a parallel program can be setup at
load time (and the parallel program generator takes advantage of this feature), there is no protocol
overhead associated with any message. There may be a place for more sophisticated memory
communication schemes, but for the regular programs used in this study, the zero-overhead
"protocol" is adequate and produces the best overall results.

The memory communication style is more general and more intuitive to a human programmer.
At this time, there are several program generators based on memory communication that can
handle a large class of computations (22, 1, 14, 2, 3, 121. Research into systolic algorithms
has produced a number of efficient systolic algorithms for spec:fic computations. Methods to
automatically transform algorithms into systolic programs have also been developed[2, 10, 18],
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but at this time, these methods work only for a subset of the computations tbat can be handled by
program generators based on memory communication.

2.4 Profiling and measurement strategy

Each parallel program generated by the respective parallel programming tool consists of One C
program (called a node program) for each node in the system, plus a program that sets up the
connections between the node programs. Each node program is compiled using a conventional
single-node compiler, loaded onto the array, and executed. Connection setup is part of loading
(and hardly contributes to execution time) and therefore not included in our measurements. All
programs are compiled to use single precision arithmetic for computations involving only float
values; this format is sufficient for our application domain. The quality of the single-node
compiler influences our measurements, and therefore, we consider two different optimization
levels.

First, each program is compiled by the production C compiler (Release 3.0) developed by
Intel Corporation for iWarp. We call this the standard version of a program. The production
compiler performs a range of conventional local and global optimizations on the intermediate
code and instruction scheduling in the backend to exploit instruction level parallclism.

The production compiler performs only limited instruction scheduling; inter-block (i.e.,
global) code scheduling is effective only for the simplest loops. To gauge the effect of optimiza-
tions that are not yet included in the production compiler [4] and to better approach the usage
model for the domain of signal processing, we created an additional version of each program.
For this version the inner loops have been checked by hand to verify that these loops are tightly
packed and operate at peak floating point performance. We cail these the optimized programs.

The code generated by the compiler for each node is then annotated to gather profiling
information to determine how often each basic block is executed. During execution, each node
program, executing on a separate node, keeps track of how often each basic block is entered.
After termination of the user code, the runtime system writes the history information into a log
file on the fUont-end computer. An auxiliary program combines the basic block frequcncy counts
with the object code to obtain the information prsented in the next section.

Practical program generators often producf a single program for all node.- to reduce the
compile time, and this program is replicated for all nodes. It contains node-specific run time
tests that determine the position of the node ir\ a virtual grid and that control how boundary
situations are handled. If such a test ends up in a loop, the overhead imposed by these tests
can be significant. We have taken care to ensure that these simplifications do not disturl" our
measurements by creating several specialized vcisions of the ncde program that remove the run
time tests.

All programs are given input matrices of size 160 x 160 and ar run on 16 iWarp nodes, so
each node is responsible for 10 rows. We present •umbers from a single representative node in
each case, because there is almost no program varation between the different nodes due to the
regular structure of the programs. This input size seemed roughly representative of the common
case. While larger matrices would hide some of the start up overheads, this would present a
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Profiled Actual Percentage
"Time Time Difference

systolic standard 0.145 0.142 2.06
optimized 0.0274 0.0270 1.45

memory standard 0.103 0.099 3.74
based optimized 0.076 0.071 6.57

Table 1: Differences between profiled time and actual execution time forthe matrix multiplication
implementations. Times are in seconds.

Memory based Systolic
program standard optimized standard optimized

MM 81 113 57 302
SOR 70 89 62 104
LU 24 41 51 145
QR 52 150 88 174

Table 2: MFLOPS measured on a system of 16 nodes for all implementations of the test programs.
The maximum rate possible is 320 MFLOPS.

picture that is too optimistic in many cases.

This overall approach of static profiling has some advantages and limitaions, which we list
here to help the reader understand what exactly is being measured. First, by basing our analysis
on the frequency information for each basic block of the user program, we cannot include any
time spent in system libraries (e.g., the C math library) or the runtime system. For the programs
that we investigate here, the fraction of time spent in the system libraries is minimal, and no time
is spend in the runtime system.

Second, the information collected is sufficient to determine which user -instructions arc
executed, but it does not account for any time waiting or spinning. For example, time spent due
to instruction cache misses or time spent waiting for messages to arrive is not accounted for. For
the single-node characterization, the static profiling information is sufficient. Furthermore, by
design, the systolic programs do not spend any cycles waiting for data to arrive, and for the given
size of the parallel system (16 nodes), memory-based programs do not have to wait either.

7b get a handle on any potential difference between the t-me reported on a node and the overall
execution time, we compare in Table I these two times for maxtrix multiplication. Sources of
discrepancies (in addition to instruction cache misses) are delays due to the competition for
network resources and stalls between adjacent instructions due to incomplete interlocks between
the functional units. Table 2 shows the measured MFLOPS for all programs.

6
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3 Results and evaluation

Systolic communication promises two measurable benefits[9]:

* Increased instruction-level parallelism.

. Reduced access to local memory.

Dynamic measurement of instruction and operation frequencies provides the opportunity to
empirically evaluate these benefits. In this section we present the instruction profiling results
for the programs discussed above (Sections 3.1 and 3.2) and discuss which microarchitectural
features are responsible for our observations (Section 3.3).

Recall that we refer to programs based on systolic communication as systolic programs and
to programs based on memory communication as memory-basedprograms.

3.1 Instruction set usage

The two iWarp instruction formats (short and LIW) allow us to directly measure the impact of
the two communication styles on instruction-level parallelism. Figure 2 shows the percentage
of the executed operations that were performed by LIW instructions.

Figure 2 shows that a properly optimized program can use the LIW instrictions effectively.
Although on average only 5% of the instructions in the optimized systolic object code are LIW
instructions, 88% of all operations are executed in an LIW instruction. This also holds true on
average for the optimized memory-based programs, where LIW instructions account for 10% cf
the instructions in the code but execute about 52% of the operations. Therefore, LIW instructions
that are inserted in the code are frequently used at runtime. The small percentage of LIW
instructions in the code also means that the average ivstruction length (and code size) does not
grow excessively. For the optimized systolic programs, the average instruction is 1.1 words long,
and for the optimized memory-based programs, the average instruction is 1.2 words long.

An LIW instruction can be used to compute multiple results in parallel, on different functional
units, but it can also be used io copy data from one register to another. Up to 4 registers (6 if
registers can be organized in odd/even pairs) can be copied by a single LIW instruction, and
this is by far the fastest way to copy registers. Since the functional units are busy in this
case executing operations scheduled by the compiler, we include these moves in our count of
operations. This explains why for MM and SOR, the standard memory-based programs execute
a higher percentage of operations in LIW instructions .han is observed for the standard systolic
programs. Otherwise, the number of operations per instruction is higher for programs based on
systolic communication than on memory communication.

Figure 3 shows the average number of operations per instruction for each program. As you
would expect, the programs that execute a higher percentage of operations in LIW instructions
also execute a larger number of operations per instruction. This proves that a reasonable number
of operations are packed in each LIW instruction.

The optimized systolic probrams show more pronounced improvements over their standard
counterparts than do the memory-based programs. There are two principle but related masons for

7
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this. First. the systolic programs are compact, including both computation and communication
in the same loop. Thus, in the optimized prograris. a large number of copy operations as well as
unnecessary loads can be removed from the loop. Second, communication and computation are
coupled; this reduces the number of operations even more, because operands for the floating point
multiplier and adder can be supplied from the communication system. Operands can be read
from or written to the communication system directly, without first copying them to a register.
However, tiits effect may not be so pronounced, because the value mad ftoro the communication
system is popped off the network queue, so the program must still copy the value to a register if
it wants to use the value multiple times.

3.2 Operation distribution

Figure 4 provides another picture of how the processor resources are used by the programs. This
figure shows the operation frequencies for the programs. The top graph shows the frequencics for
the standard prugrams, and the bottom graph shows the frequencies for the optimized programs.
The operations are divided into five major classes:

FP Ops: floating point operations Any operation that uses the floating point multiplier or
adder.

Ld/St: memory operations Loads a value hnm or stores a value to local memory.

Addr. Arith.: address arithmetic ALU and load literal operations that calculate memory ad-
dresses, including shifts, bit field operations, and count leading zeros.

Movei: ALU operations that copy a value from one tegister to another register'.

Control: Control flow instructions like branches, jumps, procedure call. and return are included
in this group.

In Figure 4, all integer operations are counted as address computations. This is not absolutely
correct, because some integer operations are needed solely to compute loop trip counts. However,
the number of such operations is negligible. Figure 4 shows that memory-based programs perform
far more memory accesses, because memory-based programs must retrieve all operands from
memory and store intermediate results to memory. Related to memory operations. Figure 4
shows a larger number of address computations for memory-based programs (for both standard
and optimized programs). Since memory-based programs access memory more frequently, they
must calculate more memory addresses, although optimizing memory-based programs reduces
the number of memory accesses and associated address computations. For systolic programs, the
number of memory accesses and related address computations is low to begin with and is even
lower after optimization.

The systolic programs use far fewer control flow operations because communication and
computation loops are combined. The memory-based programs also contain more tests to

'The floatng pornt units can also copy values between egisteus. Our profiling tool counts these moves as iluating

pornt operatmns since this floaung porn: unit is busy.
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determine the ownership of data. Since data flows through the systolic program, it doc:; not nccd
to calculate the addresses of data that are to be distributed, it only needs to read the next value
from the neighbor node.

33 Program access to communication system

The iWarp architecture includes systolic gates to allow fast program access to the communication
system. A systolic gate is a port to the communication system that is mapped directly (with
hardware) into the register file of the processor, as shown in Figure 1. There is no operating
or runtime system overhead involved in reading or writing a gate. Use of the gates as a source
or destination of operands provides the mechanism that reduces the number of load or store
operations. Figure 5 shows what percentage of all operands are supplied by a gate or written to a
gate. for thr. different instances of the applications. Operands are read from a gate about as often
as they are written to a gate.

LIW nutzed cmd*

115-
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mm #ior t qr

r3 M~erwy Convnnfmwwon Spk SyS tMC
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Figure 5: Percentage of register accesses through the gates

iWarp is a load/store architecture; the operands for all computations must be retrieved from
a register or gate, and the destination for all computations i,- either a register or a gate. As can
be seen in Figure 5, only optimized systolic programs use :ie gates for a significant fraction
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of computation operands. The standard systolic programs perform the same number of gate
accesses, but there are many more operations, so the percentage of gate accesses is much lower.
Only the optimized systolic programs contain instructions that write the result of a floating point
computation directly to a gate. In the standard program, the results are first written to a general
register and then copied (by a move instruction) to a gate. The elimination of such unneccssar/
moves by the optimization is another reason for the pronounced improvement of the systolic
programs.

The absolute number of gate operands in the memory-based programs is not affected much
by optimizations. Since the communication and computation are in separate loops, the operands
must still be fetched from memory for the computation. Therefore, the percentage of gate
operands does not change significantly.

4 Discussion

The data presented in Section 3 compare the effect of memory and systolic communication for
programs mapped by two program generators. The limitations must be understood when using the
above data to compare memory and systolic communication. The program generators described
in Section 2.3 do not cover the entire space of parallel programs. There exist a large number of
efficient systolic algorithms that have not been developed by a program generator, and strategies
to block or tile programs are being developed by various researchers[21. 20]. We are not aware
of any tool that automatically maps programs onto a distributed memory machine using blocking
or tiling, but we can use some programs from a library that is based on blocking( 161.

The key idea of blocking or tiling is to divide the problem into subproblems that can be
solved with good data locality. Each node solves one of the subproblems, and then exchanges
data to combine the subresults into the main result This problem division does the same aniount
of work as the simple program division employed by the program generator based on memory
communication but should have better communication characteristics due to the increased locality.

The systolic communication model attempts to utilize network bandwidth instead of memory
bandwidth, while the memory communication model performs computation only on values stored
in memory. This difference reveals itself in two ways. First, the memory-based program must
retrieve all of the computation arguments from memory, but the systolic program can also retrieve
arguments from the network. Second, the memory-based program must initially store all of its
messages in memory, but the systolic program avoids those memory accesses entirely because it
never stores messages.

As an example of the computation phase differences, consider the statement that forms the
inner kernel of memory-based matrix multiplication and LU decomposition. This kernel requires
an arguments to be fetched from memory:

X(i] = x[i] + p*y[i]

it requires three memory operations and two floating point operations. The systolic inner loop
passes the x vector along:

13



tmp - receiveo)
tmp - tmp + p*y~i]
send (tmp)

This version requires two network operations, two floating point operations, and one memory
operation. The systolic version trades two memory operations for two network operations.
Therefore, the memory bandwidth requirements for the systolic version ame less than the memory
requirements for the message passing version, but the communication requirements are greater.

Whether the systolic program can surpass the performance of the memory-based inner loop
depends on the balance of network and memory access provided by the processor, and this
depends on how network accesses are implemented. Two forms of network access are memory-
mapped network queues and register-mapped network queues. One example of the memory-
mapped approach is found in the CM-5[17]. In this approach, network access requires me!mory
bandwidth, so trading off memory access for network access makes little sense. In this example,
trading one memory access for one memory-mapped network access saves no memory bandwidth
unless the memory-mapped network access uses memory resources that are separate from the
.resources used by ordinary memory opertions.

The register-mapped approach avoids the memory bottleneck by feeding directly into the
register file. This is the approach taken by iWarp. Since the network queues are seen as registers,
each floating point operation can read two network values and write one. Since floating point
operations execute in parallel with memory operations, the network can be accessed in parallel
with memory.

The memory-mapped approach has the advantage that the network interface can be inserted
without completely redesigning the processor. In (1 I], Henry and Joerg review the design space
for fast implementations of message passing. They reach the conclusion that to achieve good
performance the network interface must be on the chip, and they argue that mapping the network
queues into on-chip cache in easier than mapping the network interface into the register file. With
a reasonably realistic memory hierarchy, it is not clear that memory-mapping the interface into
the cache avoids any problems. Also, if the system designer is going to the trouble of changing
the processor chip. it is probably worth considering going to the extra effort of avoiding memory
to gain the possibility of additional instruction level parallelism and the ability to support systolic
algorithms.

The number of instructions a processor can issue in parallel is limited by the number of
functional units, the amount of memory bandwidth, and the amount of network bandwidth that
the machine supports. Assuming a procesor can multiply and add in the same cycle, retrieving the
arguments from memory or the network is the limiting factor. If a processor could perform three
memory accesses in parallel, the memory-based inner loop could be performed in one instruction.
On iWarp at most two memory accesses can be performed in parallel, so the memory-based inner
loop must use two instructions, while the systolic inner loop can be performed in one instruction.

Not all systolic algorithms gain from the reduction in required memory bandwidth in the inner
computation loops. Utilizing this reduction depends on the types and numbers of operations that
can be issued in parallel. The block based matrix multiplication algorithm rearranges the loop
order, so it uses a slightly different inner loop:

14
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simple distribution blocked (tiled)
n memory communication memory communication systolic

128 102 163 291
256 114 209 304
512 120 259 310

Table 3: Measured MFLOPS on a system of 16 nodes for three implementations of matrix
multiplication of n x n matrices. The maximum rate possible is 320 MFLOPS.

C - C + x[i]*y[i]

This loop requires only two memory accesses, because c can be stored in a register. This kernel
still requires one more memory access than the systolic algorithti, but for a machine like iWarp
that can issue two memory accesses in parallel, the loops can be executed in the same number
of cycles. The systolic algorithm still has an advantage because it avoids initially storing the
messages in memory. As the size of the problem grows towards infinity, this advantage becomes
less significant. In the case of matrix multiplication, the program sends O(n2) words in messages
but performs 0(n3) iterations of the inner loop. However, this effect is still quite noticeable for
finite (realistic) arrays.

Table 3 shows the MFLOP measurements for the three matrix multiplication programs
(mapped onto 16 nodes). There is a noticeable difference between the systolic and block
programs even through the inner loop is computed in the same amount of time. As the size of
the problem grows the difference in MFLOPS between the blocked and systolic implementations
decreases.

There are several important points to aote. First, matrices must be large before the per-
formance for systolic and memory communication comes close. Second, the iWarp proccssor
supports one memory operation in parallel with each floating point operation. The performance
of memory communication on processors without this balance (e.g., those that support only one
memory access for every two floating point operations) cannot approach the performance of
systolic communication. Third, systolic programs are efficient for small input sizes. The per-
formance of blocked programs based on memory communication approaches the performance
of the systolic programs only for large input sizes. And if we map matrix multiplication onto a
larger system, e.g. with 64 or 256 nodes, even larger matrices are required to obtain the same
performance on each node. Finally, since iWarp supports static connection setup, so there is no
protocol overhead for memory communication.

Anrtherparameter that influences the tradeoffs between memory communication and systolic
communication is how the processor and the program handle message arrival. The program
generator used in this study and the block matrix multiplication explicitly store the data ,rom
the network into memory as described in Section 2.3. Other message passing implementations
could move the message data in the background by stealing memory cycles. Performing the
communication in the background does not avoid the memory bandwidth bottleneck and still
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requires time to set up the data transfers. For matrix multiplication the execution times of memory

communication (Tap) and systolic communication (T,,) are respectively:

TMp=2n x (T,+T, x n)+2n3 /p x Ti

Ts), 2n3 p x7

where T, is the start up oveihead for each message, T, is the transfer time send each wore, and
T1 and V, are the times to perform the inner loop. In our program implementation, T, = 0. In
an implementation that performs the communication completely in the background T, = 0. If
message storing steals no resources from the foreground computation, then message passing
contributes only on the order of O(n) time steps asymptotically, but if messages storing requires
foreground resources, message passing adds an 0(n2 ) effect. However, for finite sized arrays, we
need to know the values of T, and T, to calculate the tradeoff between foreground and background
communication.

5 Concluding remarks

We analyzed the execution of parallel programs based on two different communication styles.
Pir a specific input size. The systolic versions of the programs take fewer cycles to execute, and
this performance advantage is reflected in the better use of the processor resources.

We see that systolic programs, if using properly optimized code, can use the fine grained
communication effectively in the form of gates (approximately between 10 % and 20 % of all
operands/results are either supplied by a gate or written to a gate). This direct access to the
communication system provides the opportunity to optimize the programs extensively, as seen
by the overall reduction in instruction and operation counts.

A comparison of the relative merits of the communication styles cannot be done in isolation.
We have shown that the size of the input data, the instruction level parallelism, the available
memory bandwidth, and the parallelization strategy all contribute to the effectiveness of executing
a program on a parallel processor. For arbitrarily large data sets, the performance difference
caused by the communication style diminishes, if the processor supports sufficient memory
bandwidth. However, for finite, realistic input sizes, a systolic implementation enjoys a noticeable
performance advantage. But it is also well-known that message passing is more general, because
there are computations for which systolic implementations cannot currently be generated, even
though messages passing implementations can be automatically generated.

However, we can state that these communication styles exhibit different usage patterns, with
direct implications for any computer architecture that aims to be a base for both communication
styles. The results of this study indicate that systolic programs are able to use the gates more
often than the message-passing programs. This results in a lower frequency of load instructions
(and a higher frequency of gate accesses). Conversely, message passing programs require higher
memory bandwidth but can endure reduced communication performance, because independent
computation and communication activities can be overlapped. As with any study based on a
finite set of programs, we have to caution the reader not to over-generalize, but our results to date
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indicate that systolic programs are able to benefit from directly accessing the communication
system.
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A Example

Here we describe two versions of a matrix multiplication program to illustrate the fundamental
differences in data movement and mapping betwecin systolic programs and memory communi-
cation programs. The conventional sequential algorithm to compute C = C + AB is shown below
in Figure 6. Both the systolic and memory communication programs compute the same result
given A and B, but the p ograms go about getting this result in a significantly different order.

for (k-0; k<N; k++)
for (i=O; i<N; i++)

for (j=O; j<N; j++)
C~i] (j] - C(i] (j] + A[i] [k]*B(k] [j]

Figure 6: Matrix multiplication.

For ease of explanation, both programs multiply two N x N matrices on an N processor linear
array. Both multiplication schemes can easily be extended to handle two-dimensional processor
arrays as well as matrices that do not exactly fit on the processor array.

A.1 Matrix multiplication using memory communication

The memory communication program follows the standard data parallel paradigm and uses
memory communication to move data to the processor that is to perform the computation. The
matrices are divided and every element is assigned to a processor. The processors that "own"
elements of C are responsible for computing the values of C, so the processors must fetch non-
local data needed to compute their elements of C. The program proceeds in alternating phases
of communication and computation. A processor first sends data needed by other processors or
receives the data it needs. Then it updates all elements of C that are stored on this processor.

In this case, the matrices are divided by rows. Rows p from A, B, and C are assigned to
processorp. Therefore, processorp is responsible for computing the ph row of C. Here is pseudo
code for the computation executed by processor p:

for (k - 0; k < N; k++)
if (k =- p)

broadcast row p of B
copy row p into Brow

else
receive row k of B into Brow
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for (j - 0; j < N: j++)
Clp'][j] - C(p][j] + A[p] [k]*Brow(j];

Figure 7 illustrates the first two steps, for k = 0 and k = 1, of the program shown above for
the multiplication of two 3 x 3 matrices. In the first step (Figure 7.a), processor 0 broadcas ts the
row of B stored on processor 0 to all other processors. Then all processors add A(i](0, * B[0lUJ
into the elements C[i]lj] of C they own (Figure 7.b). In the next step (Figure 7.c), processor I
broadcasts row I of B, so that all processors can compute with row I of B. After all rows of B
have been broadcasted. C (distributed over all processors) contains the results of C + AB.

This program uses the memory communication model for int.er-processor communication.
All communication is performed from memory to memory. The "owner" of row k sends the data
from memory to all other processors, which store the local copy of this row in memory.

A.2 Matrix multiplication based on systolic communication

The basic idea of the program based on the systolic paradigm is to rump data through the
processor array during computation instead of reading all operands from memory[ 151. A and
B are still assigned to processor memory, but the elements of the matrix C flow through the
processor array. (In the general case of multiplying an L x M matrix with an M x N matrix, it is
also possible that either A or 8 are pumped through the processor array.) Unlike in the memory
communication style, no single processor is responsible for completely computing the value of
a particular element of C. Instead each processor partially computes every element of C that
passes through it.

Again matrix B is divided by rows, but matrix A is divided by columns. Each processor p
is assigned the eih row of B and the p*h column of A. The initial values of C are pumped into
processor 0. Below is the pseudo code for processorp:

for (i - 0; i < N; i++)
for (j = 0; j < N; j++)

receive C(i] [j into c
c - c + A[i] p] * B[p] J];
send c to processor p + 1:

Note that with an optimizing compiler, the temporary c should be kept in a register and not be
moved into memory during execution of the loop body.

Figure 8 shows four snap shots of this program for the multiplication of two 3 x 3 matricez.
In Figure 8.a. processor 0 receives C10)[01 (initialized to 0 if C=A*B is to be computed) and adds
A[01[0]*B[0][01 to C[0][0]. In the next step, shown in Figure 8.b, the result (called C[O0[0l') of
processor 0 is passed on to processor 1. On processor 1. A[0][1]*B[][0j is added to C[01[0]'.
At the same time, processor 0 receives C[0][I] and adds A[0][0]*B[Olf [ to C[0][11. Figure
8.c depicts how the product A(01[21*B[2][01 is added to the rsult computed by processor 1.
C[0][0J". The last picture (Figure 8.d) shows how the final value of C10][01 leaves the processor
aray.
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Figure 8: Parallel matrix multiplication based on systolic communication
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A.3 Discussion

The systolic and memory communication styic for matrix multiplication us. memory and the
communication system differently. The inner computation loop of the memory communication
program performs 3 memory acccsses but no communication for each iteration. (We assume that
the loop invariant operands are stored in a register for the inner multiply-accumulate loop.). The
systolic program performs I memory access and 2 covamunication steps per iteration of its inner
loop, so the systolic program takes advantage of :,ammunication system Landwidth in addition

., to memory bandwidth in tight computation loops.
Since the systolic program uses the communication system in its inner loop, it requires much

finer grained communication than the memory communication program does. The memory
communication program blocks its communication into more infrequent, larger messages. A
high throughput communication system (in balance with the computation capabilities of the
processor) and low overhead access to the communication system are needed to make this fine
grained communication feasible.

Note that the above presentation omitted a number of details. First, since only parts of the
arrays is stored locally, an additional level of mapping takes place so that memory must only
be allocated for the locally resident data. Second, multiple rows and/or columns arc usually
stoied on a single node, complicating the loop structure and address arithmetic further. Third,
unrolling the bodies is usually difficult unless the bounds of the various matrices are known at
compile time. As everyone who has ever looked at code that was produced by a parallel program
generator or compiler knows, this code is hard to read and filled with conditional tests.
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